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ABSTRACT

Gray & Atkinson’s (2003) application of quantitative phylo-
genetic methods to Dyen, Kruskal & Black’s (1992) Indo-
European database produced controversial divergence time
estimates. Here we test the robustness of these results using an
alternative data set of ancient Indo-European languages. We
employ two very different stochastic models of lexical
evolution – Gray & Atkinson’s (2003) finite-sites model and
a stochastic-Dollo model of word evolution introduced by
Nicholls & Gray (in press). Results of this analysis support the
findings of Gray & Atkinson (2003). We also tested the ability
of both methods to reconstruct phylogeny and divergence
times accurately from synthetic data. The methods performed
well under a range of scenarios, including widespread and
localized borrowing.

1. INTRODUCTION

Questions about the origins of human populations hold an
enduring fascination. Often the answer lies beyond recorded
history, prior to even the oldest of ancient manuscripts or oral
traditions. In such cases, although we may not have access to any
literal description of events, we can nonetheless gather other kinds
of evidence to determine what happened when. Thomas Jefferson,
for example, in Notes on the State of Virginia (1782: 227), used an
intuitive comparison of related languages to draw historical
inferences about their age –
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A separation into dialects may be the work of a few ages only,
but for two dialects to recede from one another till they have
lost all vestiges of their common origin, must require an
immense course of time; perhaps not less than many people give
to the age of the earth. A greater number of those radical
changes of language having taken place among the red men of
America, proves them of greater antiquity than those of Asia.

Jefferson’s reasoning was based on the implicit assumption that
languages change through a process of descent with modification
and that this change occurs at a roughly constant rate. Debate over
whether or not this assumption is plausible has generated as much
controversy as the historical problems to which it has been applied.
Can word lists be turned into dates, and can we quantify the
uncertainty in these time estimates? We will argue here that, at least
in the case of Indo-European, the answer to both of these questions
is ‘‘yes’’.

2. WORDS INTO DATES OR WATER INTO WINE?

Some 170 years after Jefferson, Morris Swadesh (1952, 1955)
formalized the idea of inferring language divergence times from
word lists when he developed lexicostatistics and glottochronology.
Lexicostatistical methods infer language trees from the percentage
of shared cognates between languages – the more similar the
languages, the more closely they are related. Usually a list of 100 or
200 meanings (known as the Swadesh 100 and 200 word lists) are
used, comprising terms that are thought to be relatively universal,
culture-free and resistant to borrowing. Glottochronology is an
extension of this approach to estimate time depth on the resulting
genealogical tree under the assumption of a ‘glotto-clock’ or
constant rate of lexical evolution. Using traditional glottochronol-
ogy, time-depth is calculated using the formula t ¼ ( log C)/
(2 log r), where t is time depth in millennia, C is the percentage
of cognates shared and r is the ‘‘universal’’ constant or rate of
retention (the expected proportion of cognates remaining after
1,000 years of separation; Swadesh, 1955). For the Swadesh 200
word list, a value of 81% is often used for r.
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Although initially received with some enthusiasm, glottochron-
ology was heavily criticised and most linguists today view it as
discredited. These well known criticisms are discussed in some
detail in Campbell (2004), Gray & Atkinson (2003) and Atkinson &
Gray (in press[a, b]). There are four key criticisms of glottochron-
ology. First, the conversion of character-state data to percentage
similarity scores between languages results in a loss of information
and hence a reduction in the power of the method to reconstruct
tree topology and branch lengths accurately (Steel, Hendy & Penny,
1988). This problem is exacerbated by the fact that some languages
have multiple words for a given meaning and a few may have no
word or the same word for two different meanings (Campbell,
2004). Second, distance-based tree-building techniques such as
UPGMA (Unweighted Pair Group Method with Arithmetic mean)
can produce erroneous trees under conditions of rate heterogeneity
(Blust, 2000). Third, language evolution is not always tree-like.
Terms can be borrowed, distorting divergence time estimates.
Fourth, by comparing ages estimated using glottochronology with
historically attested dates, Bergsland & Vogt (1962) demonstrated
that glottochronology can produce erroneous results due to rate
variation.

Gray & Atkinson (2003; Atkinson & Gray, in press[a, b]) argue
that whilst the criticisms of glottochronology reflect legitimate
concerns, it is possible to estimate dates using a different class of
methods. Current statistical phylogenetic methods used widely in
biology allow us to overcome the problems associated with
glottochronology. First, character-based stochastic models of
evolution retain phylogenetic information from the source data
and allow us to reconstruct phylogeny accurately, even under
conditions of rate heterogeneity (Huelsenbeck et al., 2001). Char-
acter-based methods can also account for polymorphisms (multiple
words for the same meaning) and uncertainty in vocabulary
assignments and cognacy judgements. Further, by using an explicit
model of evolution, the assumptions of the model are clear and the
effects of changing these assumptions can be tested easily. Second,
Bayesian phylogenetic inference allows us to quantify random error
in tree topology and branch-lengths, a crucial factor if results are to
be used to test between competing hypotheses. Third, the degree of
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reticulate evolution and borrowing between languages can be
assessed using visualization tools, like Split Decomposition (Huson,
1998) and NeighborNet (Bryant & Moulton, 2002), that do not
assume a tree-like model of evolution (Bryant, Filimon & Gray, in
press). A statistical framework also makes it possible to test the
robustness of results to some violations in the assumptions of the
method, including the nature and magnitude of borrowing. For
example, Atkinson & Gray (in press[b]) presented evidence that
their divergence time estimates were robust to borrowing by
comparing a number of different coding procedures and analysing
subsets of the lexicon thought to be more resistant to borrowing.
Nicholls & Gray (in press) tested the robustness of their results to
borrowing also, using synthetic data to simulate various degrees of
reticulation. Finally, violations of the assumption of rate constancy
can be investigated in a similar fashion. Where there is a concern
about its effect, rate-smoothing algorithms allow divergence times
to be estimated without the assumption of a strict glotto-clock.
Gray & Atkinson (2003) used this approach to test between
competing hypotheses for the age of Indo-European. Nicholls &
Gray (in press) quantify the uncertainty introduced by rate
variation by analysing subsets of the data for which historically
attested dates exist.

Many features of vocabulary evolution are not represented in the
classes of models that Gray & Atkinson (2003) and Nicholls &
Gray (in press) fit to lexical data. As a consequence uncertainty
arises from two sources:random error, which would be present if
their models were perfect descriptions of vocabulary evolution, and
which arises from stochastic fluctuations predictable in distribution;
and systematic error, the estimation bias caused by model misspec-
ification. Random error will be well-estimated in the Bayesian
framework employed here. However, the problem of quantifying
the uncertainty due to model misspecification is much harder, since
the number of ‘‘real’’ language evolution models one might
reasonably entertain is enormous. Progress can be made only by
focusing on those effects thought likely to be important and
estimating the size (and direction) of the biases they cause (see
section 8).

TRANSACTIONS OF THE PHILOLOGICAL SOCIETY 103, 2005196



3. A NEW SET OF ANCIENT DATA

Gray & Atkinson (2003) based their analysis on lexical data derived
fromDyen,Kruskal&Black’s (1992) Indo-European database. They
used a modified electronic version of the Dyen, Kruskal & Black
(1997) dataset comprising 200 Swadesh list meanings in 87 languages
with cognacy judgements made by expert linguists. Three extinct
languages were added using multiple sources to corroborate cognacy
judgements (Adams, 1999; Gamkrelidze & Ivanov, 1995; Guterbock
& Hoffner, 1986; Hoffner, 1967; Tischler, 1973, 1997). Divergence
time estimates from Gray & Atkinson (2003) suggested a root age of
Indo-European of between 7,800 and 9,800 BP, consistent with the
Anatolian theory of Indo-European origin (Renfrew, 1987). Cru-
cially, this age range was outside the 5,000 to 6,000 BP age range
implied by the alternative, Kurgan, theory of Indo-European origin
(Gimbutas, 1973a,b). These results were supported by further work
fromAtkinson&Gray (in press[a, b]) andNicholls &Gray (in press).

Here, we apply a number of new techniques and tools of analysis
to an alternative Indo-European dataset compiled by Ringe,
Warnow & Taylor (2002). This data includes 430 meaning
categories in 20 extinct and 4 extant Indo-European languages.
Table 1 shows a sub-sample of the data with eight meaning
categories in four Germanic languages and Greek.

Repeating the two analyses of Gray & Atkinson (2003) and
Nicholls & Gray (in press) on a second Indo-European dataset has
a number of benefits. The data include different languages and some

Table 1. A sample dataset of eight meaning categories across four
Germanic languages and Greek. Numbers in superscript indicate
cognate sets within each meaning category identified by Ringe,
Warnow and Taylor (2002).

Meaning all fall I leg mountain pull sing water

Old English ealle1 fielþ1 ic1 scanca1 beorg1 tı�ehþ1, drægþ3 singþ1 wæter1

Old High
German

alle1 fellit1 ih1 bein2 berg1 dinsit2, ziuhit1 singit1 wazzar1

Old Norse allir1 fellr1 ek1 leggr3 fjall2 dregr3 syngr1 vatn1

Gothic allai1 driusiþ2 ik1 – faı́rguni3 atþinsiþ2 siggwiþ1 wato�1

Greek p�atse12 p�ipsei3 �ec �x1 rj�eko14 o}qo14 e00kjei4 �aidei2 €tdxq1
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different meaning categories to those in the Dyen, Kruskal & Black
(1992) database. In addition, cognacy judgements were made by
Don Ringe, an independent expert in the field, who was not
involved with the Dyen, Kruskal & Black (1992) study. These facts
alone make this analysis a particularly interesting test of the
methodology. Different date estimates for each set of data would
cast doubt on the reliability of the method and/or the amount of
temporal information in the data. Conversely, consistent dates
across both datasets would support the idea that there is a strong
temporal signal in lexical data and that the methods employed are
robust to variations in the cognacy judgement criteria, meaning
categories used and even the languages analysed.

Of course, agreement across data sets might simply indicate a
bias in the inferential methodology. If this were the case we would
expect the methodology to show similar biases on some synthetic
data. In section 8, we test the methodology on a range of synthetic
data simulated under models that were designed to include features
thought to be problematic for the methodology. In this way we
deliberately set up model misspecification and test for its effect.

Another advantage of using the Ringe et al. (2002) data is that it
comprises mainly ancient languages. First, all other things being
equal, this should improve the resolution of some of the deeper
Indo-European branching structure. Second, Garrett (in press) has
found evidence for modern advergence processes in a number of
Indo-European sub-groups. He points out that the analyses of Gray
& Atkinson (2003; Atkinson & Gray, in press[a, b]) and Nicholls &
Gray (in press) used mainly contemporary languages and hence
may be biased by the effect of certain types of unidentified modern
borrowing. Atkinson & Gray (in press[b]) discuss why this is
unlikely and Nicholls & Gray (in press) argue that sampling fewer
languages lessens the impact of borrowing. However, here, by
analysing a dataset of ancient languages, many of which are two or
three thousand years old, we can all but eliminate the effect of
modern borrowing. Moreover, our synthetic studies show that if
local borrowing is present in ancient and modern languages this
need not produce a bias. Where model distortion is mild, and
uniform over time, parameters distorted to fit calibration points
near the leaves predict ages for unattested branching events.
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4. ENCODING WORD LISTS FOR CHARACTER BASED ANALYSIS

Unlike glottochronology, we never count cognates nor calculate ages
based on pair-wise distances between languages. Character-based
methods ensure that information about the presence or absence of
individual word forms or grammatical and phonological features
(the characters) can be retained. Table 2 shows a matrix of 1’s and
0’s that expresses the presence or absence of cognates across the five
languages listed in Table 1.

5. STOCHASTIC MODELS AND BAYESIAN INFERENCE OF PHYLOGENY

Stochastic models of evolution and Bayesian inference of phylogeny
allow us to overcome the problems identified with the distance-
based tree-building methods used in lexicostatistics and glotto-
chronology. Bayesian and related likelihood-based inference can
outperform distance and parsimony tree-building methods in
situations where models are reliable and there are unequal rates
of change (Kuhner & Felsenstein 1994). Likelihood-based inference
integrates three related components – the observed data, a
stochastic model of character evolution, and an evolutionary tree
or a set of trees – and is based on the premise that we should favour
the explanation that makes our observed data most likely. For
languages, the observed data can take the form of a binary matrix

Table 2. Indo-European cognates from table 1 expressed in a binary
matrix. Each row represents a language and each column a
character (in this case a cognate set). A ‘1’ indicates that a
particular cognate set is present in that language, a ‘0’ indicates
absence of the cognate set and a ‘?’ indicates uncertainty.

Meaning all fall I leg mountain pull sing water

Cognate set 1 2 1 2 3 1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 1

Old English 1 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1
Old High German 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 1
Old Norse 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 1
Gothic 1 0 0 1 0 1 ? ? ? ? 0 0 1 0 0 1 0 0 1 0 1
Greek 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1
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that codes cognate presence or absence, as in Table 2. It is assumed
that these data are generated by some stochastic model of character
evolution on the tree. This model is called the ‘‘observation model’’.
Trees which make the sequence data a relatively more likely
outcome of the observation model have relatively higher likelihood
scores. The maximum likelihood (ML) tree is that tree or trees
making the data most likely. Although parameters of the character
evolution model can be assigned values prior to analysis, it is
possible, and usually preferable, to estimate these observation-
model parameters from the data. This allows a priori assumptions
about the process of character evolution to be minimized and is a
major advantage of the likelihood approach to phylogenetic
inference (Pagel 1997).

The basic procedure for calculating the likelihood score for the
model of Gray & Atkinson (2003) is described in Atkinson & Gray
(in press[a]), and is provided as online supplementary material
to this paper (available at http://ling.man.ac.uk/More/PhilSoc/
Transactions.html) – a more detailed explanation in a biological
context can be found in Swofford et al. (1996). It is natural to present
the age of the Most Recent Common Ancestor (MRCA) of all
languages in the ML tree as the ‘‘result’’ of an analysis. However,
there are usually many trees with likelihood scores which are close to
the likelihood of the ML tree. It is easy to show that even when the
observation model is an accurate description of cognate evolution
there is a very high probability that the true tree will not coincide
with the ML tree. For this reason, where feasible, it is preferable to
report a confidence interval for the age of the MRCA which takes
into account uncertainty in the reconstructed tree.

To do this we used Bayesian inference of phylogeny and Markov
Chain Monte Carlo (MCMC) algorithms (Metropolis et al., 1953)
to generate a sample distribution of trees that reflects the compo-
nent of phylogenetic uncertainty in our analysis due to random
error. This inference is based on the data, an observation model and
a set of prior beliefs (or priors) about all unknown parameters of the
model, including the tree topology, branch-lengths, and rate matrix.
We favour priors that are uninformative with respect to the
hypotheses being investigated. However, an important component
of any Bayesian MCMC analysis is to ensure that results are robust
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to a range of sensible priors. A summary explanation of the
application of Bayes’ theorem and the MCMC algorithms to
phylogenetics is included in the supplementary material, and
discussed in more detail in Atkinson & Gray (in press[b]) and
Huelsenbeck et al. (2001).

Crucially, the MCMC posterior sample of trees is much more
informative about the phylogenetic signal in the data than methods
that return any single ‘‘optimal’’ phylogeny (c.f. Ringe et al., 2002).
The sample distribution allows us to approximate phylogenetic
uncertainty (uncertainty in tree topology and branch lengths), given
the data, and to incorporate this into our results. This is impossible
using either the comparative method or traditional glottochronol-
ogy, and yet the effect of phylogenetic uncertainty is a crucial
consideration if results are to be used to test historical hypotheses.
We can calculate divergence times across the entire Bayesian sample
distribution and determine the error in date estimates resulting from
phylogenetic uncertainty. This also means that we can make
inferences about the age of Indo-European without having to
commit to a particular topology.

6. TWO DIFFERENT APPROACHES TO LIKELIHOOD INFERENCE AND

MODELLING

Most scientists would agree that the best way to validate a result is
to repeat the analysis, preferably on an independent data set. A
close second, however, may be to reanalyse the data using a
different methodology and model. Here then, as well as analysing
an alternative dataset, we employ two very different models of
language evolution, based on a very different set of core assump-
tions. Each model and methodology is described briefly below. A
more detailed explanation is available in the online supplementary
material (http://www.philsoc.org.uk), and in Atkinson & Gray (in
press [a, b]) and Nicholls & Gray (in press).

6.1 Finite-sites Model and Method 1

Gray & Atkinson (2003; and Atkinson & Gray, in press[a, b]) use a
model of binary character evolution implemented in the programme
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MrBayes (Huelsenbeck & Ronquist, 2001) to generate a sample
distribution of trees with branch lengths proportional to the
inferred amount of evolutionary change. We can model the process
of cognate gain (0 to 1) and loss (1 to 0) using three parameters – l,
the mean substitution rate, and p0 and p1, which represent the
relative frequencies of 1’s and 0’s. The substitution rate is a
parameter estimated in the MCMC analysis and the equilibrium
frequency of 1’s and 0’s can be estimated from their frequency in the
data. Missing data is treated as another unknown binary parameter
to be estimated.

Because there are just two states, 0 and 1, this model is trivially
time-reversible – we cannot tell the direction in which the cognate
evolved from its history in a single language. This model allows a
single cognate to appear in and disappear from a single language
more than once over the course of time, allowing the model to
mimic the effect of word-borrowing. As the direction of time is not
determined, we cannot determine the root of the tree from the data
– we need to provide an outgroup as a root. For all the method 1
analyses reported here, trees were rooted with Hittite, consistent
with independent linguistic analyses (Gamkrelidze & Ivanov, 1995;
Rexova, Frynta & Zrzavy, 2003). Atkinson & Gray (in press[a, b])
found that the root point did not affect age estimates significantly.
A Gamma shape parameter (a) was also added to allow for rate
variation between cognate sets. As with the overall rate parameter,
a was estimated from the data. An a value of 5 was observed,
indicating moderate rate variation between cognate sets.

We can also account for rate variation between lineages and
through time by relaxing the assumption of a strict glottoclock.
The 87 languages in the modified Dyen et al. (1997) data set
allowed for 11 internal clade constraints (see supplementary
material). Terminal nodes representing contemporary languages
were set to 0 years whilst 3 extinct languages (Hittite and
Tocharian A & B) were constrained in accordance with estimated
ages of the source texts. For the 24 languages in the Ringe et al.
(2002) data, 12 internal node constraints were available, whilst 20
extinct languages were constrained in accordance with estimated
ages of the source texts (see supplementary material). Sanderson’s
(2002a) penalized-likelihood algorithm, as implemented in r8s
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(Sanderson, 2002b), was then used to smooth rates of evolution
across each tree and to calculate divergence times. This approach
allows for rate variation between lineages while incorporating a
‘‘roughness penalty’’ that costs the model more if rates vary
excessively from branch to branch. Interestingly, high smoothing
factors were found to fit the data best, suggesting that the process
of evolution is in fact relatively tightly constrained. The procedure
was repeated on all of the trees in the MCMC Bayesian sample
distribution. The distribution of divergence times at the root can
be used to create a confidence interval for the age of Indo-
European.

There are three potential criticisms of this model. First, the
same rate parameter is used to estimate cognate gains and losses.
Whilst cognates can be lost relatively easily, the innovation
events that produce them are rare - it is very unlikely that two
languages would ever independently gain the same cognate. Thus,
it may be argued that trying to fit a single rate parameter to a
model of cognate gain and loss is ‘‘patently inappropriate’’
(Evans, Ringe & Warnow, in press). Indeed, this may be
problematic if the rate of gain and loss are widely different.
However, processes of borrowing and dialect chains at divergence
mean that models which allow cognates to be gained more than
once may still be reasonable. In fact, as we will see below, this
feature of the model may allow it to accommodate moderate
reticulation in the data.

A second criticism is that the inference is itself a hybrid of ML
and Bayesian inference. The distribution over unrooted trees is a
posterior distribution, but the estimation of branch lengths is a
penalized ML method. This will cause problems if, for example,
there is significant uncertainty in branch lengths, so that the mode
of the branch length distribution is not representative of the branch
length distribution as a whole.

A third potential criticism is that method 1 uses a ‘‘finite sites’’
model from biology. This means character state changes are
modelled through time across a fixed number of characters, or
‘sites’. However, in reality, the number of cognates or sites is not
finite and depends on the number of languages we are looking at
and how long they have been evolving. In what follows we describe
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an alternative model introduced by Nicholls & Gray (in press) that
does not assume finite sites.

6.2 Stochastic-Dollo Model and Method 2

Dollo’s Law states that traits can evolve only once (Farris, 1977). In
this context, we treat cognates as traits and assume that the same
cognate cannot be independently created in different languages.
This assumption is equivalent to asserting that the cognate data is
homoplasy free (c.f. Ringe et al., 2002). Based on this assumption,
we outline a stochastic model of language change appropriate to the
cognate data described in section 3.

The model allows language change to occur in three different
ways: words (and corresponding cognate sets) are created, words
are lost, and words reproduce (when languages split, forming two
child copies of a parent language). We assume that words are
created in any given language at rate k. When a word is created, it
falls into a new cognate class, so word creation and cognate class
creation are synonymous. If there are k languages extant at time t,
new cognates are created at total rate kk. Each word is lost from a
given language independently at rate l. If at time t, there are k
languages and language i contains li words, word death occurs at a
total rate of l(l1 + l2 +…+lk).

Each language splits at rate h. When a language splits, two child
copies of the language are made and the parent language dies. At
the time of splitting, the child languages are indistinguishable from
the parent language and thereafter evolve in exactly the same way
as the parent language did. If there are k languages at time t,
language splitting occurs at total rate kh.

We assume that the times between all events causing language
change are exponentially distributed and that all rates – the cognate
birth rate, k, the cognate loss rate, l, and the language splitting rate,
h – are constant across time and space. We assume also that all
languages and cognates evolve independently.

The data described in section 2 is collected in such a way that
cognates that are present in no languages or only one language at
the time of collection are not recorded. Thus the observed cognate
birth rate k* is different from the actual cognate birth rate k since
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words must be born and survive into at least two languages in order
to be observed. This data thinning process may result in the birth
times of cognates in the data being unevenly distributed over the
tree. This effect is accounted for in the likelihood calculation for a
given tree, the details of which are given in Nicholls & Gray (in
press).

There are two obvious features of the data that this model fails to
capture. The first is missing data. We do not account for missing
data and recode any missing cognates as absent. It is necessary to
check for biases caused by this approximation. We repeat analyses
omitting languages with a significant amount of missing data (we
use 13% as the cut-off below). The effect of doing this on the
relatively complete data sets treated in this paper is negligible.

A more important issue is that of borrowing between languages.
If one language gains a new word by borrowing it from another, the
Dollo assumption is violated. While it is relatively simple to include
borrowing when building a model of language change, we are
currently unable to analyse such a model. In order to quantify the
magnitude of this misspecification, in section 8 we present a series
of analyses of data synthesised under models with borrowing but
analysed under the Stochastic-Dollo model.

Inference for the Stochastic-Dollo model is made within a
Bayesian framework and the data is analysed using a MCMC
algorithm implemented in Matlab by two of the authors (GN and
DW). The relevant software, called TraitLab, can be downloaded
from (aitken.math.auckland.ac.nz/�nicholls/TraitLab/).

6.3 Other inference issues

Both of the above models assume that the characters in the binary
data are independent. Evans et al. (in press) argue that the results of
any analysis using these models are invalid due to violations of the
assumption of independence. They make the important point that
the independence assumption is violated when individual meanings
in the Swadesh word list are broken up into characters representing
multiple cognate sets. Specifically, if a particular cognate set is
present in a language, it will be less likely that other cognate sets for
the same meaning will also be present. Conversely the core
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meanings must be occupied at all times in all languages, whereas
both models allow core meaning categories to be empty. We
attempt to detect bias caused by certain effects in this class below
using synthetic data. The problem of empty meaning categories
does not seem to be important. We surmise that this is because
ancestral meaning categories need not be filled by cognates present
in the data. They may be occupied by ancient cognates with no
instances in the data.

In characterizing their data, Ringe et al. (2002) are concerned
with the distinction between shared innovations and shared
retentions. In both methods described here, we form a model
weighted average over these cases and, as a consequence, this
distinction is not a problem.

7. RESULTS

Figure 1 shows the results of a series of analyses of both data sets
using both of the models of evolution described above. Table 3
summarizes these results including the data, priors and other
conditions used for each analysis from Figure 1.

Gray & Atkinson (2003) found divergence time estimates for the
root of the Indo-European tree were robust to a wide range of
plausible rooting points, Bayesian priors, cognacy judgement
criteria, age constraints and the effect of missing information in
the data. Key results from Gray & Atkinson (2003) are summarized
in figure 1 (DF1-6). These results are consistent with a number of
subsequent analyses, using subsets of 20 languages (DF8 & 9) and
even when the data is limited to the highly conserved and
borrowing-resistant Swadesh 100 word list (DF7). Using their
stochastic-Dollo model, Nicholls & Gray (in press) found evidence
for similar ages using the Swadesh 100 word list items (DD11) and
slightly younger divergence times using the whole data set (DD10)
and a subset of 31 languages (DD12). The inferred ages are broadly
consistent with the Gray & Atkinson (2003) results.

Results from the analysis of the Ringe et al. (2002) data are
consistent with the Dyen et al. (1997) data. Varying branch-length
priors (RF2), rates across sites (RF7), and rates through time
(RF8), and the cognacy judgement criteria (RF3, RD10) had little
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effect on divergence times estimated from the Ringe et al. data.
Analysing progressively more refined data sets (Swadesh 200 word
list items only – RF4, RD11; and Swadesh 100 word list items only
– RF5, RD12), also had little effect on the mean age estimates,
although, predictably, as the amount of information decreased,
variance in the estimated dates increased. The analysis RF5, of
Swadesh 100 list terms, appears to go against this trend, showing
less variation than the analysis of Swadesh 200 list terms in RF4.

Figure 1. Results of analyses of the Dyen et al. (1997) dataset (to
the left of the dotted line, with labels beginning with ‘D’) and Ringe
et al. (2002) dataset (to the right of the dotted line, with labels
beginning with ‘R’) using the finite-sites (labelled ‘DF’ and ‘RF’)
and stochastic-Dollo (labelled ‘DD’ and ‘RD’) models. Each
analysis is summarized with a plotted mean and error bars
representing a 95% confidence interval. The horizontal bands
indicate the age range implied under the two competing theories of
Indo-European origin – the Kurgan hypothesis (cross-hatched
band) and the Anatolian hypothesis (grey band).
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This is misleading, however, as the weak signal in the data meant
that most of the trees produced in this analysis had to be filtered out
because they were inconsistent with the clade constraints for known
Indo-European language groups. As a result, variation was
artificially decreased in this analysis, a case where Method 1 fails
to produce reliable error bars. In analyses of larger data sets almost
all of the trees in the Bayesian sample were consistent with
recognized Indo-European groups. This anomaly did not occur
using the Trait Lab analysis of the Swadesh 100 dataset because the
programme allows topology to be constrained prior to the analysis.
Finally, in RF6, the topology of the Indo-European tree was
constrained to that obtained by Ringe et al.’s (2002) own analysis of
lexical, phonological and morphological characters. Again, the
estimated age at the root of the tree is unaffected. This is a
consequence of the fact that data can be informative of total tree
length even when uninformative of topology.

8. CONTROLLED MIRACLES – SYNTHETIC DATA VALIDATION

No statistical model of language change will capture all aspects of a
process as complicated as the evolution of a language lexicon. In
this sense all models are lies. However, models can be used as ‘‘lies
that lead us towards the truth’’. In other words, they can allow us to
answer questions of interest with sufficient precision and accuracy
so as to provide a meaningful result. The crucial caveat is that we
must test the performance of our model for a given task. To
determine precision, we need to be able to quantify the uncertainty
in our results. One way to do this is to generate synthetic data on a
known phylogeny under plausible alternative models of evolution,
including models which violate the assumptions of our inference
model. Validating a methodology on synthetic data is useful for a
number of reasons. First, we know the ‘‘true’’ phylogeny - the
topology and branch lengths on which the data was generated. This
means we can test the ability of our method to reconstruct a
phylogeny from a given set of data accurately. Second, it is
generally much easier to generate data on a phylogeny than it is to
estimate the phylogeny that has produced a given set of data. As a
result, we can test the performance of our methods on data
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generated under more sophisticated models. Third, we know the
‘‘true’’ data, (i.e. the real data). By comparing the real data with
synthetic data generated under different models, we may be able to
identify certain assumptions of our model that are especially
important.

Figure 2 shows the mean root age and 95% confidence interval
for a series of synthetic data analyses carried out using TraitLab.
Results to the left of the vertical line are for the finite-sites model of
method 1, whilst those to the right are for method 2, fitting the
stochastic-Dollo model. These results and the evolutionary models
used to generate each set of data are summarized in Table 4.

Both the methods were able to reconstruct the age of data
synthesized under their respective models (SF1, SD1). More
interestingly, TraitLab allows data to be simulated under a number
of other evolutionary scenarios. Data was synthesized on a number
of different trees; however, the results presented here all use the
same tree, chosen from the posterior distribution in RD16. The true
age was 8680 years.

First, we investigated the effect of borrowing on divergence time
estimates. We generated a series of synthetic data sets using models
of evolution that allow for horizontal as well as vertical transmis-
sion of cognates between random pairs of languages. As with the
standard models, cognates evolve through time along each lineage
according to the stochastic-Dollo model of word birth/death. In
addition, however, for any given time interval, cognates can be
borrowed from one lineage to another randomly selected existing
lineage with a certain probability. By varying this probability we
can simulate the effect of different rates of borrowing. Even
relatively high rates of borrowing, at 20% of the cognate death rate
(SF2 and SD3), had only a minimal effect on divergence time
estimates, causing a slight underestimation of ages in both methods
of analysis. As the rate of borrowing increased the extent of
underestimation also increased. For a borrowing rate of 100%, date
estimates were reduced by 30% (SF3 and SD4).

Second, it may be unrealistic to assume that words can be
borrowed from any language to any other language with equal
probability. For example, Western-European languages may be far
more likely to borrow from other Western-European languages
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than from Iranian languages. For this reason, we also synthesized
data with borrowing limited to local areas of the tree. This was
achieved by restricting the borrowing process to only those
languages that had diverged within a certain threshold cut-off time.
If, for example, a 4000 year threshold was used, at any given time
interval on the tree, lineages that had been separated for over
4000 years could not borrow words between them. This has the

Figure 2. Mean root age and 95% confidence interval for a series of
synthetic data analyses carried out using TraitLab. Data was
generated under a number of models of evolution on a tree with a
root age of 8680 years BP (indicated by the horizontal line) chosen
from the posterior distribution in RD16. Results to the left of the
vertical line are for method 1, fitting the finite sites model, whilst
those to the right are for method 2, fitting the stochastic-Dollo
model using TraitLab.
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effect of eliminating borrowing between the most distantly related
languages, such as between the Germanic and Iranian languages.
Using a 4,000 year threshold and 20% borrowing rate caused
method 2 (SD6), but not method 1 (SF4), to underestimate
divergence times. More localized borrowing tended to result in
more accurate date estimates. Interestingly, using a much lower
borrowing threshold, such as 500 years, and relatively high rates of
borrowing allows us to approximate the effects of dialect chain
divergence, where languages remain in contact for a period after
beginning to separate. Again, this had little effect on divergence
time estimates (SD5).

Finally, data were generated under a dependent model of cognate
evolution to test the effect of violations of the independence
assumption. The dependent model of evolution models multiple
subsets of cognates representing meaning categories. Under this
model, cognates can evolve independently between meaning

Table 4. Summary of results shown in figure 2 for synthetic data
analyses, including the mean and standard deviation for the
estimated age at the root of the tree on which data was synthesized.
Data was synthesized on a tree chosen from the posterior
distribution in RD16. The true age was 8680 units.

Analysis l S.D. Synthetic data model

SF1 8488 595 Finite-sites
SF2 7925 725 Stochastic-Dollo with 20% global borrowing
SF3 5838 160 Stochastic-Dollo with 100% global borrowing
SF4 8911 545 Stochastic-Dollo with 20% local borrowing, 4000 years
SF5 8677 404 Dependent model
SF6 8660 479 Dependent model with 20% local borrowing, 1000 years
SF7 8061 350 Dependent model with 20% local borrowing, 1500 years
SD1 8558 500 Stochastic-Dollo model
SD2 8054 262 Stochastic-Dollo Model with 10% global borrowing
SD3 7291 220 Stochastic-Dollo Model with 20% global borrowing
SD4 6021 123 Stochastic-Dollo Model with 100% global borrowing
SD5 7891 443 Stochastic-Dollo Model with 100% local borrowing, 500 years
SD6 6157 161 Stochastic-Dollo Model with 20% local borrowing 4000 yrs
SD7 8567 499 Dependent model
SD8 8853 331 Dependent model with 20% local borrowing, 1000 years
SD9 7642 370 Dependent model with 20% local borrowing, 1500 years
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categories but are subject to constraints within each meaning
category. Each language must always have at least one cognate in
each meaning category. In addition, by varying parameters
controlling the expected vocabulary size relative to the number of
meaning categories, we can alter the expected number of words
within each meaning category in each language. The resulting
model is dependent in that each language must have at least one
word for each meaning category. However, the converse feature of
the model proposed by Evans et al. (in press) is not explicitly
modeled: if a word is present, other words of the same meaning are
born and die independently. It happens that the probability
distribution for the number of words in each category (Poisson,
conditioned away from zero) does decline from a maximum at one
word (for the parameters we chose when we generate synthetic
data). This dependent model may more accurately reflect the true
process of language evolution. Both methods perform very well at
recovering the true age (SF5, SD7). This remains the case even if we
introduce borrowing (SF6, SF7, SD8, SD9).

9. DISCUSSION

The divergence time estimates derived from the two independent
lexical data sets using two very different models of word evolution
are strikingly consistent. The findings of Gray & Atkinson (2003)
seem to be robust to the choice of languages sampled, to the
meaning categories analysed, to who makes vocabulary assign-
ments and cognacy judgements, and even to the age of the
languages sampled. The fact that ancient and modern data sets have
produced similar date estimates strongly supports the notion that
the process of language evolution itself is sufficiently constrained
and robust to human socio-cultural change as to make date
estimates based on lexical comparison a feasible possibility. This is
also evidence against the suggestion that contemporary borrowing
could bias the age estimates.

Of course, one problem could be with the methodology. It is
therefore impressive that two different methods using very different
models give the same result. We were able to address the principal
concerns that have been raised about model misspecification using

ATKINSON, ET AL. – FROM WORDS TO DATES 213



synthetic data. The models were found to be robust to key criticisms
of borrowing and independence. Significantly, if the age implied by
the Kurgan hypothesis were the true age of Indo-European, model
misspecification would have to cause us to over-estimate the age of
the common ancestor by a factor of one and one half in order for us
to find support for the 8,000 BP to 9,500 BP age range implied by
the Anatolian theory. None of the types of model misspecification
tested here produced appreciable overestimation. Analyses of data
synthesized under models incorporating various degrees of global
and local borrowing produced progressively greater underestima-
tion of age estimates as the degree and extent of the borrowing was
increased. Interestingly, whilst the finite-sites model performed
relatively well in reconstructing the root age from data synthesized
under a stochastic-Dollo model with borrowing (e.g. SF2 & SF4), it
could not reconstruct reasonable branch-lengths from data
synthesized under the strict Dollo model, with no borrowing. The
time reversible nature of the model appears to allow it to effectively
accommodate for homoplasy due to borrowing, however, when
applied to homoplasy-free synthetic data the model has difficulty.
When data was generated under a ‘‘dependent’’ model of evolution
both models were able to estimate the root age relatively accurately.
This suggests that whilst these models assume that the evolution of
characters is independent, they are in fact robust to violations of
this assumption. Certainly, there is no evidence to suggest that

Figure 3. Majority-rule consensus tree from the initial Bayesian
MCMC sample of 1,000 trees based on the Ringe et al. (2002) data.
Values above each branch indicate uncertainty (posterior proba-
bility) in the tree as a percentage. Branch-lengths are proportional
to time. Shaded bars represent the age range proposed by the two
main theories – the Anatolian theory (grey bar) and the Kurgan
theory (hatched bar). The basal age (8,680 BP) supports the
Anatolian theory. While consensus trees are a useful visual aid, it
is known that the branch support values become unreliable when
there is substantial model misspecification. The consensus network
provided in the supplementary material is a better representation of
the results, although perhaps more difficult to interpret.
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violations of the independence assumption might cause us to
grossly over-estimate ages.

A key aspect of our approach is that we can make date estimates
without having to postulate just one phylogeny. Instead, inferences
about divergence times are made on the basis of the Bayesian
sample distribution of trees, allowing us to quantify the phylo-
genetic uncertainty implicit in our date estimates. We can, however,
use a consensus tree or consensus network (Holland & Moulton,
2003) as a visualization tool. A consensus network is provided in
the supplementary material. Figure 3 shows a consensus tree
constructed using the distribution of trees from the standard RF1
analysis of the Ringe et al. (2002) data. Branch-lengths are
proportional to time. As well as tree topology and branch length
information, the consensus tree shows the degree of support for
each sub-clade within the phylogeny, expressed in the form of the
‘‘posterior probability’’ of a clade — the percentage of time that the
clade appears in the Bayesian MCMC sample distribution. A value
of 100, for example, indicates that the clade occurs in all sampled
trees. Lower values indicate an increasing degree of statistical
uncertainty. It is evident from figure 3 that the two theories of Indo-
European origin may not, in fact, be mutually exclusive – a
possibility identified by Cavalli-Sforza et al. (1994). Whilst the basal
age (8,680 BP) supports the Anatolian theory of Indo-European
origin, there is a period of rapid divergence during the hypothesized
time of the Kurgan expansion, between 5,000 BP and 6,000 BP.
Gray & Atkinson (2003) note a similar pattern in their analysis of
the Dyen et al. (1997) data.

10. CONCLUSION

The well-known criticisms of glottochronology have led many
researchers to reject the possibility of estimating dates from lexical
data. Any approach that attempts to turn words into dates is
dismissed as attempting the impossible – trying to turn water into
wine. Here we have shown that estimating divergence time
confidence intervals from lexical data is far from impossible or
miraculous. New statistical tools from evolutionary biology enable
us to estimate phylogeny and divergence times without falling

TRANSACTIONS OF THE PHILOLOGICAL SOCIETY 103, 2005216



victim to the pitfalls of glottochronology. The availability of these
methods means that it is no longer valid to dismiss all attempts at
estimating divergence dates simply because Swadesh’s approach
was flawed. If used sensibly these new methods offer a powerful set
of tools with the potential to resolve some of the long-standing
debates in historical linguistics.
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